首页> 外文OA文献 >Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing
【2h】

Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing

机译:同时稀疏和低秩丰度矩阵估计   高光谱图像解混

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a plethora of applications dealing with inverse problems, e.g. in imageprocessing, social networks, compressive sensing, biological data processingetc., the signal of interest is known to be structured in several ways at thesame time. This premise has recently guided the research to the innovative andmeaningful idea of imposing multiple constraints on the parameters involved inthe problem under study. For instance, when dealing with problems whoseparameters form sparse and low-rank matrices, the adoption of suitably combinedconstraints imposing sparsity and low-rankness, is expected to yieldsubstantially enhanced estimation results. In this paper, we address thespectral unmixing problem in hyperspectral images. Specifically, two novelunmixing algorithms are introduced, in an attempt to exploit both spatialcorrelation and sparse representation of pixels lying in homogeneous regions ofhyperspectral images. To this end, a novel convex mixed penalty term is firstdefined consisting of the sum of the weighted $\ell_1$ and the weighted nuclearnorm of the abundance matrix corresponding to a small area of the imagedetermined by a sliding square window. This penalty term is then used toregularize a conventional quadratic cost function and impose simultaneouslysparsity and row-rankness on the abundance matrix. The resulting regularizedcost function is minimized by a) an incremental proximal sparse and low-rankunmixing algorithm and b) an algorithm based on the alternating minimizationmethod of multipliers (ADMM). The effectiveness of the proposed algorithms isillustrated in experiments conducted both on simulated and real data.
机译:在处理逆问题的众多应用中,例如在图像处理,社交网络,压缩感测,生物数据处理等方面,已知感兴趣的信号在同一时间以几种方式构造。这个前提最近将研究引导到了创新而有意义的想法,即对所研究问题所涉及的参数施加多个约束。例如,当处理其参数形成稀疏矩阵和低秩矩阵的问题时,采用适当的组合约束可施加稀疏性和低秩,这将带来显着增强的估计结果。在本文中,我们解决了高光谱图像中的光谱分解问题。具体地,引入两种新颖的非混合算法,以尝试利用位于高光谱图像的均匀区域中的像素的空间相关性和稀疏表示。为此,首先定义一个新颖的凸混合罚分项,该项由加权$ \ ell_1 $和与矩阵的小面积相对应的丰度矩阵的加权核范数之和组成,该面积由滑动方形窗口确定。然后使用该惩罚项对常规的二次成本函数进行正则化,并在丰度矩阵上同时施加稀疏性和行级。通过a)增量近端稀疏和低秩混合算法以及b)基于乘数交替最小化方法(ADMM)的算法,可以将生成的正则化成本函数最小化。在模拟和真实数据上进行的实验中说明了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号